大楼中央空调控制系统设计_大楼中央空调控制系统设计图

       大家好,今天我想和大家谈谈我对“大楼中央空调控制系统设计”的一些看法。为了让大家更好地理解这个问题,我将相关资料进行了分类,现在就让我们一起来探讨吧。

1.中央空调运行原理是什么啊?写字楼中央空调应该怎么样维护?谢谢!

2.浅析建筑工程空调通风系统节能控制?

3.空调控制系统是什么?空调控制系统如何运作

4.中央空调相关规范有哪些

大楼中央空调控制系统设计_大楼中央空调控制系统设计图

中央空调运行原理是什么啊?写字楼中央空调应该怎么样维护?谢谢!

       中央空调运行原理是什么啊?写字楼中央空调应该怎么样维护?谢谢!

        原理;溶液吸收式制冷:稀溶液加热(集中供热;自备燃煤、燃油、燃气锅炉等)--水蒸汽--(冷却水)冷凝--冷剂水--节流U--喷淋(冷剂水)蒸发制冷、浓溶液吸收水蒸气-----稀溶液-、-、-。

        在喷淋蒸发时制冷作用于冷媒水盘管制取7—14度冷媒水供末端使用。

        维护:

写字楼中央空调造价

        1 VRV国产品牌 造价在1800000-1900000左右

        2 水源热泵 造价在2200000-2500000左右,如果需要生活热水回收,再此基础上加上5%左右

        3 地源热泵 挖洞100-150m,3.5㎡一个洞,也就是3.5*3.5的矩阵,每个井可以提供7KW的名誉换热量,要审批,主要是如果低下条件允许的话,就可以,千万不要将就,否则后期维护很难,如果有这方面的关系,可以在系统运行调试的时候申请环保补助,官方会给20%上下的财政补助,造价和水源热泵不相上下

        4 水冷冷热水机组 造价在1900000-2000000上下,

        5 风冷冷热水机组 造价在2100000-2300000上下,

        因为你没提供更详细的资料

        我是按照7000㎡的空调使用面积来计算的

        具体问题具体分析

        我的造价也很笼统

        不过我个人比较推荐地源热泵

        当然也是条件很理想的基础上啊

        如果条件不是很理想

        我觉得应该这样分析

        如果你想让初投资小,后期维护费用不是你投资范围的话,那就选择4

        如果你不在乎初期投资,想让后期费用降低以节省维护成本,那就选择1,但不是国产的,因为国产VRV根本称不上VRV,冬天衰减很严重,我推荐三星,日立这类二流国际品牌,至于大金那样一流品牌,造价师天文数字,我觉得也不划算

        依据你所描述的资源环境,建议采用水源热泵,但要考虑整个地表水部分的深度、面积、河水的清洁度以及流动性等等。最重要的是要考虑整个换热盘管部分对原有的河道有没有其他的影响。对于VRV国产品牌,按照你的面积和用途,这也是一个选择。但VRV空调系统,从严格意义上说它不能算是真正的中央空调。而且能效比很低。它的优点是能独立控制。而地源热泵这块,由于你的空调面积相对较小,在这我建议你不要采用,因为工程造价相对比较高。没有相应的投资必要。但可以肯定的说,换热井肯定是可以挖的,华东地区深度一般在80-120米之间。由于目前国家对地下水采集这块有严格的规定,所以地源热泵系统绝大部分都是采用闭式循环系统,也就是只和地下土壤及地下水换热,而不采集地下水,这样是允许的。水冷机组+锅炉这种传统的空调形式,其实他的维护成本抛除锅炉部分,它是这几个空调系统中最低的。而风冷系统是目前写字楼中央空调的次选项,因为它的工程成本是最低的。

        对于空调造价。VRV系统,大概450-550元/㎡;地表水水源热泵,约400-500元/㎡;地源热泵,地埋管部分约5500元/口井,地上部分350-450元/㎡;水冷机组与地源热泵地上部分造价差不多;风冷机组,约300-400元/㎡。

        全手工制作,希望能帮到你!

       

写字楼中央空调怎么计费?

        这种按平方收费不合理。应该用中央空调计费系统,能量型计费,根据使用能量缴费。用多少交多少,少用少交,不用不交。

溴化锂中央空调运行原理是什么

        溶液吸收式制冷:稀溶液加热(集中供热;自备燃煤、燃油、燃气锅炉等)--水蒸汽--(冷却水)冷凝--冷剂水--节流U--喷淋(冷剂水)蒸发制冷、浓溶液吸收水蒸气-----稀溶液-、-、-。

        在喷淋蒸发时制冷作用于冷媒水盘管制取7—14度冷媒水供末端使用。

写字楼中央空调如何配置?

        根据冷量选择机组就行了。总冷负荷的工式为Q=(Qw+116.3n)*1.5(w),Qw=KA(aT)(W),其中Q=要计算总冷负荷,Qw=围护结构总冷负荷,n=室内人数。K=围护结构传热系数A=围护结构传热面积aT室内外侧空气温差。还有一个算法,直接套现成的数值写字楼的每平米冷负荷是90-115W。在乘以房间总面积总冷量就出来了

写字楼中央空调改造空调内机外机应该怎样安装

        其实外机的匹数和内机总匹数有一个能效比,控制在这个比例范围内就可以了,当然小一些也挺好的,加上使用方法适当,可以延长机子的使用寿命。 现在很多中央空调的控制器都配有遥控器和线控器,可以任选其一。 中央空调的风口可以是固定的,但是可以通过控制器调节风向,达到整个空间温度的均衡。 在福建可以试着了解七彩工程哦。

写字楼中央空调一般怎样收费

        中央空调一般是以水为介质,将能量在用户末端和能量中心进行交换以实现集中供冷(或供热)的空气调节系统。分散使用和集中供能是中央空调区别家用空调的主要特征。中央空调虽是一个空气调节系统,但我们通常所说的中央空调主要是指能量中心的制冷主机,按能源方式可分为电制冷中央空调、热制冷中央空调和地温中央空调;按制冷工质可分为氨制冷机组、氟利昂制冷机组和溴化锂制冷机组;还可按其它方式进行不同分类。既然中央空调是集中供能和分散使用,如果分散使用的付费主体不同,就要涉及到费用分摊的问题,这将是本文要着重讨论的中央空调计费方式中央空调最简单的计费方式就是按面积分摊,它源于计划经济中集中供暖时的暖气收费,当时“用暖的人”是单位的人,暖气费用是以福利包干的形式由单位统一支付,这种不合理的收费方式并未引起人们太多关注。随着市场经济的成熟,货币分房、100%房屋产权、“单位人”向“社会人“的转变,这种简单、原始的不合理计费方式已逐步为人们所抛弃。能量“商品化”,按量收费是市场经济的基本要求。中央空调要实现按量收费,必须有相应的计量器具和计量方法,按计量方法的不同,目前中央空调的收费计量器具可分为直接计量和间接计量两种形式。直接计量形式的中央空调计量器具主要是能量表。根据能量守恒原理,中央空调对空间的热交换量与其介质中的能量变化量相等,能量表就是通过直接计量中央空调介质(冷冻水)的能量变化量来实现对中央空调的量化,其工作原理是依据物质的热交换能量计算热力学公式Q=∫cΔTV=∫c(T2-T1)qt。(能量表)由带信号输出的流量计、两只温度传感器和能量积算仪三部分组成,它通过计量中央空调介质(冷冻水)的某系统内瞬时流量、温差,由能量积算仪按时间积分计算出该系统热交换量。这种中央空调计费方式原理明确,结果直观,易于理解。由于它要计量多个参数,特别是对温差的精度要求较高,所以其生产成本较高,同时改变中央空调的系统设计和要求水质,普遍采用受到制约,主要用在分层、分区的中央空调计费上。有些热量表生产厂商将其暖气表的能量积算仪上加“取正”功能后就认为可以用在中央空调的计费上,这是一种误解。暖气和中央空调计量原理虽相同,但实际应用环境不一样:暖气是通过调节水流量来调节热交换量的,其进、回水温差在35℃左右,对流量精度要求较高而温差精度要求较低,所以热量表标准温差精度在3-95℃;中央空调未端是定流量系统,它是通过调节风速来改变热交换面积,从而达到调节热交换量之目的!因此其对流量精度要求较低而温差精度较高,因中央空调的进、回水标准温差是5℃,如果允许1℃的误差,在一个装有6台风机盘管的家庭开一台时,已不能满足计量要求。因此用于中央空调计费的能量表温差精度应在1℃以下。现在暖气热量表温差精度多在2-3℃,价格已在千元,要其达到计量中央空调的温差精度成本将更高。所以,目前以能量表来实现中央空调的计费技术虽比较成熟,但其应用成本太高而并未被商家看好和消费方接受。在中央空调直接计费因价高昂和应用不便而无法为用户所接受,又出现了一些简单、便宜的间接计费方法。比喻:电表计费,热水表计费等。电表计费就是通过电表计量用户的空调末端的用电量作为用户的空调用量依据来进行收费的;热水表计费就是通过热水表计量用户的空调末端用水量作为用户的空调用量依据来进行收费的,但这两种间接计费方法虽简单、便宜;但都不能真正反应空调“量”的实质,中央空调的要计的“量”是消耗的能量(热交换量)的多少。如按这种计费方法,中央空调系统能量中心的空调主机既使不运行或干脆没有空调主机,只要用户空调末端打开都有计费,这显然是不合情理的。中央空调计费就是将中央空调“能量”的商品化,而商品的价格取决于商品的内在的“质”和外在的“量”,而这种计费方式只计量了中央空调末端的外在的“量”,却忽略了中央空调内在的“质”,用户的空调未端使用“用电量”、“用水量”并不等于用户所消耗的“用冷量”,所以出现了不合情理的结果,也必然造成计费纠纷;因而这种中央空调计费方式被市场所淘汰也在情理之中。计时计费就是通过计量器计量用户空调末端的使用时间、同时参考空调末端能力作为用户的空调用量依据来进行收费的,相对于电表计费、热水表计费来说,根据用户的使用时间计费变得更加直观,但其仍然没的涉及到中央空调的本“质”----“用冷量”,也就是说,用户空调未端使用的“时间量”同样不等于用户所消耗的“用冷量”。因此,要合理的计费,就必须对中央空调的“质”进行定“量”。CFP系列中央空调计费系统是最新一代以风机盘管为计费对象的中央空调计量器具,它是郑州春泉暖通节能设备有限公司首创的“有效果计费”原则和“计时计费”法的结晶,包括CFP计费器、CRS485-D区域管理器、CJ-W98管理软件和CJ-2000计费主机四部分。根据物质的热交换能量计算热力学公式Q=∫cΔTV=∫c(T2-T1)qt,中央空调风机盘管的流量q基本是定值,时间t我们可以通过计时器计量,温差(T2-T1)是技术的关键点。物质的热交换有传导、对流和辐射三种方式,中央空调风机盘管的热交换主要是通过传导来实现的,不存在对流,并且辐射也可忽略不计,传导量与温差和换热面积成正比,风机盘管的换热面积又与风量v成正比。在标况(供水温度T1=7℃;回水温度T1=12℃)下,中央空调风机盘管的热交换量计算公式Q=∫cΔTV=∫c(T2-T1)qt可变为Q=∫Xvt,(v:风速系数;X:型号能力系数;t:使用时间)。根据模糊理论,我们将供水温度T1≤12℃或T≥40℃,基本能满足用户正常使用要求的情况作为有效计量收费;供水温度T1>12℃空调使用效果较差的时间作为损耗进入成本,不收取用户费用,这就是“有效果“计费原则。就如1KW的电炉,用1小时就是1度电,但其前题是电压在220V±5%范围内,这个±5%就是基本能满足用户正常使用要求的“有效果”范围,如果电压超过±5%这一范围,用户电器就没法正常工作。CFP系列中央空调计费系统不仅计量了中央空调的“量”(用户使用时间),关键在于计量的是中央空调的“质量”(有效果时间)!较好的解决了中央空调计费的合理性,确保作为商品的中央空调“用冷量”具有实用性,满足用户正常使用要求,较好的保障了用户的权益;同时其将供水温度T1>12℃或T<40℃,空调使用效果较差的时间作为损耗处理,费用计入中央空调运行成本,符合物业管理收费原则。她良好的适用性对于中央空调系统的设计、安装无任何特殊要求,较小的投资成本满足了用户的需求,已广泛应用于以风机盘管为末端的住宅楼、写字楼中。该系统具有对用户的空调进行计费、查询、欠费禁用等管理功能。CFP系列中央空调计费系统的计费误差经过系统内二次分摊后已达到中央空调计量精确度要求。2002年10月20日,CFP系列中央空调计费系统取得国家计量器具型式批准,CFP中央空调计费系统是目前唯一国家主管部门批准中央空调专用计量器具。

中央空调怎么维护 中央空调维护注意事项

浅析建筑工程空调通风系统节能控制?

       中央空调节能节电的七大问题

       1:冷却水泵如何节电?

       对常规冷却水泵来说,当冷却水进出口温差小于4—5度时,会出现“小温差,大流星”现象,此时水泵做一部分无用功,而对水泵进行变频控制或以小泵替代大泵就可以节省大量电能。

       2:变速调节为什么是水泵节电最有效的措施?

       根据水泵流量Q、压力P、转数n和功率N之间关系:可看出调节转速即可大幅度调节水泵的运行功率。水泵节电主要是在满足所需求的流量扬程前提下,合理调节水泵所消耗的功率,而不能依靠节流来调节。变速调节与其他调节方法相比,不但可水泵在高效区运行,效率最高,能量损失最少,而且能根据不同的需求,柔性调节水泵运行功率,使水泵在满足需求的情况下,消耗的电功率最匹配,最节电。同时也是目前水泵节电中采用最普遍,最有效的一项措施。

       3:当冷却水泵并联运行时如何控制?

       当冷却水泵不是以“一对一”形式,而是并联形式时,要根据冷却水进出口温差大小来控制水泵运行台数,几台并联泵是大小搭配,根据需求负荷变化而运行不同规格的水泵较节电,最好对水泵变频控制,效果最佳。

       4:如何发挥冷冻水池的蓄冷功能?

       一般的冷冻水池主要功能是起缓冲和补充水作用,有的系统无水池,只有小的膨胀水箱。在冷冻机能力有余量,且冷冻水池可以有一定的容量情况下,可以利用峰谷电电价差,在谷电时段几台冷冻机满负荷运行,使水池中存有较低温度的冷冻水,水池所蓄的冷星在峰电时段释放,以减轻冷冻机的负荷,可以节省较可观的电费。

       5:蓄冷水池有哪些优点?

       节约电费、、回收期短、运行费用低、充当消防水池、调节冷负荷、冷冻机运行平稳等功能。

       6:空调系统节电潜力为什么较大?

       因为空调系统是以负荷最大时的数据为设计依据的,而在平时的运行中,最大负荷占一年的总负荷的份额很小,即大部分时间是在低负荷区运行,系统一旦安装运行后,水系统及风系统就一定了,不可能随需求负荷变化而变化,水泵风机等设备始终按原条件运行,在需求负荷较低时,就会产生“大马拉小车”现象,所以空调系统节电潜力较大。

       7:如何解决“水力不平衡”现象?

       水力系统由于缺少压力调节装置,会造成系统局部水压不平衡。为需求,不得不提高水泵的扬程来克服系统的最大阻力,增加了水泵的电能消耗。如果将产生水力不平衡的管道加装压力平衡装置,并加以调节,即可降低水泵的扬程,从而降低电耗。

空调控制系统是什么?空调控制系统如何运作

       建筑能源管理系列

       前言:建筑能耗是指建筑在建设和运行使用过程中所利用的能源,其中使用过程中能源利用量占主导部分,包括建筑制冷、采暖、照明、通风、炊事等方面的能耗。我们之前探讨了关于建筑围护结构、建筑照明系统及建筑供暖系统的节能改造。而在我国,真正的“耗能大户”的还是空调通风系统。空调与我国冬夏季能源紧张局势特别是当前电力紧张局势的形成有着密切关系,空调的迅速普及,使他作为建筑能耗大户的地位日益突显。到2020年中国内地空调高峰负荷节电空间约9000万kW,相当于5个三峡电站的满负荷容量,相应可减少电力建设投资4000亿元以上。因此,空调通风系统的节能已是当务之急,意义重大而深远。接下来笔者将一一介绍从需求侧相应对系统进行调节的空调通风系统节能措施。冷热源中央空调常见的冷热源配置方式有水冷冷水机组、热泵型机组和溴化锂吸收式机组。第一种冷热源在设计工况下的能效比较高,一般为3.7~5;第二种冷热源即热泵型机组,夏季制冷,冬季制热。在设计工况下,其能效比较水冷机组要低,仅达到3左右,但其具有良好的节能和环保效果;中央空调的另一种冷热源为溴化锂吸收式机组,这类机组的能效比(制冷量/消耗的热量)比较低,节电不节能,适用于有废热和余热的地方。建筑冷热源系统能量利用效率对比除了冷热水机组的选择,还可通过自动控制冷热源主机系统的启停量来实现空调通风系统的节能。如下图所示,是一种按冷冻水回水温度控制启停台数,利用主机信号和故障报警信号构成反馈的逻辑控制流程。采用变频系统变频空调是指加装了变频器的常规空调。压缩机是空调的心脏,其转速直接影响到空调的使用效率,变频器就是用来控制和调整压缩机转速的控制系统,使之始终处于最佳的转速状态,从而提高能效比。变频技术在现代空调中的使用已成为必然趋势,它不仅能有效改良空调系统的工艺不足,还能大幅降低能耗,节省运行成本。设计者在选择设备时,通常留有一定的设计余量,实际上设备也极少在全负荷工况下运行,甚至从未全负荷运行过。建筑物由于使用情况的变化(如出租率不高,建筑功能变化等),负荷也会发生相应变化。建筑物的实际负荷会随着室外气候的变化而波动。通常空调设备只能按设计的额定功率运行,当负荷降低时,设备仍然按照额定功率全负荷输出运行,这就必然造成能量的浪费。如果我们能够使用变频技术使空调设备的输出功率随负荷的变化而变化,那么就可起到节能的效果。根据空调负荷来相应改变水流量或风流量可有效实现地节能。变风量空调系统(VAV)是通过末端装置来补偿室内负荷的变动,调节房间送风量以维持室温。变风量和定风量系统相比,一般情况下可节能50%。变水量系统(风机盘管)是通过水量控制的方法来调节温度的,其比定流量系统要节电。随着工业变频器的推广应用,通过对水流量、风量及主机等的变频控制调节,可实现其同所需空调负荷的实时匹配,从而产生显著的节能效益。如下图所示,VAV空调系统常采用在送风机的输入电源线路上加装变频器,根据控制系统的指示改变风机的转速,满足空调系统的设计。新风控制根据舒适程度要求,一般把总新风量控制在全风量的10%左右,是可以节能的。有的空调系统回风量不到90%,回风量偏小,无度的增大新风热负荷,不是节能运行。利用自动控制技术实现新风控制,是实现空调通风系统节能的一个有效途径。空调系统确定后,可根据当地的气象变化情况,将焓湿图分成若干个气象区(空调工况区),对应于每个空调工况区采取不同的运行调节方法。基本要求是调节机构尽量少,调节方法尽量简单,系统在各个工况分区内的运行最经济、合理,能最大限度地利用自然能源,以减少冷量、热量和电能的消耗,降低运行成本。(全年运行的五工况分区图、调节条件及调节内容)泵与风机的节能风机和水泵是空调系统中几乎不可缺少的设备,又是空调系统中耗电最多的设备之一。大中型中央空调系统中水泵的耗电量甚至占整个系统耗电量的30%左右。泵与风机存在的主要问题有:①为了压低初投资,所选用的泵与风机质量低,额定效率低于先进水平。②系统设计不合理,大马拉小车,有较大裕量。运行时泵与风机偏离性能曲线上的最佳工作区,运行效率比额定效率低很多。③输送管路的设计和安装不合理,管路阻力大,运行能耗加大。④管路水力不平衡,只能采取阀门或闸板调节流量,增加了节流损失。⑤维护保养不当,泵与风机经常带病工作,浪费了能源。一般的节能措施有:①更新和改造,用高效率泵与风机替代原有的效率比较低的泵与风机。②选择水泵或风机特性与系统特性匹配。管网特性曲线尽量通过效率的最高点,对于流动特性变化比较大的管网系统,应尽量选择效率曲线平坦型的水泵。③在主要管路上安装检测计量仪表。④切削叶轮、减小直径。如果所选水泵的流量和扬程远大于实际需求,最简单的方法就是减少叶轮的直径,从而减小轴功率。但是这种方法只适用于扬程比较稳定的系统。⑤调节入口导叶,从而改变水泵或风机的流量压力曲线。入口导叶调节范围较宽、所花代价小、有较高的经济性,并可实现自动调节,因此被广泛采用。总结总而言之,随着现代科学技术的发展,空调自控系统愈趋成熟,为使空调系统资源得到更加充分的利用,通风系统节能调节效果更加显著,我们应注重新技术的发展,不断实践、优化节能系统,在设计时达到高标准、高要求,在满足舒适度的基础上实现高能效。

       更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:/#/?source=bdzd

中央空调相关规范有哪些

       在暖通空调系统的管理控制过程中,自动化空调控制系统的有效应用,在降低能耗、改善系统运行品质以及强化管控劳动强度等方面发挥出了重要的作用。接下来就跟随我们一起来了解一下中央空调系统中自动控制技术的应用的相关内容吧!

       现阶段,在暖通空调控制系统的管理控制过程中,自动化中央空调控制系统的有效应用,在降低能耗、改善系统运行品质以及强化管控劳动强度等方面发挥出了重要的作用。本文主要就针对中央空调控制系统自动控制系统的应用进行了简述,文中首先介绍了中央空调系统中的自动控制技术,而后又针对智能控制技术的应用进行了分析,以希望能够对后期的相关工作有所指导。

       目前,随着科学技术的不断发展,中央空调控制系统应用日趋广泛,陆续投入到一些高级写字楼、工作厂房等大型建筑物的室内温度调节过程。同时,又由于自动化与智能化控制技术的不断成熟,自动控制技术也逐渐被引入到了中央空调控制调节系统,由此不仅为人们提供出了一种更为舒适的工作与生活环境,而且在节约运行成本与延长中央空调控制系统使用寿命方面也发挥出了巨大的价值。

       1中央空调控制系统中的自动控制技术

       1.1冷热源及水管系统的调节

       对于中央空调控制系统的主机系统而言,其自身所带有的单元控制器能够提供出冷凝器与蒸发器等设备的进出口温度以及水流开关压缩机的压力等多项指标因素。在这一过程中,系统所采取的主要也是一种群控模式,由此很好的实现了对热泵的自动化管控,而且也发挥出了一种很好的监控、查询及报警等功能。

       在机组平时的运行过程中一旦出现故障,系统主控制器便会立刻出现相应的显示并发出警报;此外,还能够对系统所设定的相关数值进行调整和改_等操作。比如在一天的不同时段,如晚上和白天,系统所设定的数值存在着较大的差异。针对系统压缩机结合相关命令进行操作,参照冷冻机房出口的设定值来调整压缩机入口导叶阀。在这一过程中也可以针对冷冻水的出库温度进行设定,并对主机的运行状态可通过水流量传感器与温度传感器等来进行实时的监控。

       1.2新风和空调机组的参数测量

       为了更好的提升室内空气洁净程度和新鲜度以及室内舒适度,需要中央空调控制系统能够对新风进行及时的补充。一般情况下,在新风空调机组送风通道的位置需要进行温度以及适度传感器的安装,并通过加湿法的应用来有效的控制流量,由此更好的满足设计要求。中央空调系统还能够结合室内温、适度的计算负荷来完成风挡的自行更换,进而也成功的实现了对送风量的有效控制。此外,中央空调控制系统还能够结合室内外温湿度以及系统所预定温湿度调整风阀的开度,并对排风阀实施一种联动控制,进而也达成了一种降耗节能的效果。

       新风阀与排风阀在机组运行停止之后就会处于一种关闭状态,此时回风阀应当保持全开,对于中央空调系统的自动化管控可应用DOC控制器来实现。在实践过程中,结合新风温度,对水阀通过PID进行调节,从而有效的保证了送风度为预定值,同时通过控制蒸汽阀与加湿阀,保证了冬季风机出口空气温度的达标。而且系统还能够对风机出口的温湿度以及新风过滤器的两侧压差进行实时监控,一旦这些数值出现异常,系统将随即发生自动报警。

       1.3中央空调系统中风机盘管的监控

       中央空调系统中的冷暖设备主要由空调机组、新风机组以及大量的风机盘管。其中风机盘管目前市场上主要由DOC控制器与具备通讯能力的控制器两种类型;其中DOC控制器具备与系统主机的通讯功能,能够对冷机、冷水进行很好的控制,这种类型的控制市场价格一般较高;而具备通讯能力的盘管控制器,在应用过程中建议要参照水系统的连接情况对风机盘管进行分组,并在每组支路的入口侧进行流量计、水温传感器以及水压变送器的安装。

       目前,在中央空调控制系统的自动化控制过程中,还无法实现完全依靠DOC技术进行控制,所以在系统的制冷效果控制与风量调试等过程中也就无法应用各类风阀的自动化调节功能来达到风量均匀的设计要求。针对此类问题,一般比较常用的方法就是“基准风口法”,也就是用手动方式实现对风量的调整。

       2智能控制技术的应用

       以某酒店为例。在该酒店中总计安装了3台冷却水泵,其电机容量和负荷率分别为65KW、90%。在该中央空调系统中分别采用下位机为S7-300PLC和上位机为监控软件,其中央空调变频器的节能所示。

       在该案例的中央空调管控技术主要应用了模糊控制技术与神经网络控制技术两大智能控制技术;其中模糊控制技术通过对人思维的模拟实现了对一些无法构造模型的有效管控;此外,在变射频技术以及PLC应用的基础上,模糊控制器的应用相比传统的PID控制模式能取得一种更为显著的效果。

       2.1自动控制系统在定风量空调系统中的应用

       定风量系统的运行过程中,一旦风量确定,风机不管负荷如何改变其都保持一种全风量的运转,而且伴随着送风温度的改变也会很好的满足室内冷热负荷的变化需求,从而更好的保持室内能够处于一种最佳的温湿度状态。一般中央控制系统,不仅要具备基础的供暖、供热和加除湿功能,而且还要能够对系统排风口、电动风门及回风机等部件进行智能化的控制,从而实现控制系统的循环自动化运行,由此也能取得一种良好的管控效果。在定风量空调系统的自动控制系统中,其工作重点就是对于空调温湿度调节以及排风阀、新风阀、回风阀等应用比例的管理控制方面。

       2.2自动控制在变风量空调系统中的有效应用

       在变风量系统的运行过程中,当室内冷、热负荷变化时,并不会造成送风温度的变化,改变的也只是风量,由此便能很好的维持了室内的温度与湿度。该系统在每一房间的送风入口位置都进行了自动管控风阀的布设。在其实践应用过程中,通过对送风量大小的控制与调节,实现了对每一房间温度与湿度的很好控制。可变风量控制系统的一大主要特点就是送风温度维持恒定,也就是表冷器的回收调节阀开度保持不变。

       总之,在中央空调中自动控制系统的有效应用,发挥出了巨大的应用价值,其不仅实现了一种良好的节能降耗的效果,而且也使得系统的控制效率得到了显著的提升。所以,自动控制系统在中央空调系统中的应用前景也是十分广阔的。

       以上就是关于中央空调系统中自动控制技术的应用的详细解答,不知道大家对我们的介绍是否满意。

       中央空调设计规范

       1.总则  主要规定了这本规范适用的范围,那就是“适用于上海地区新建与扩建的居住和公共建筑中,以舒适性要求为主,制冷量在7-80kw的家用(商用)中央空调的设计。改建工程可参照规范执行。” 2.术语  与本规范有关的,在其他规范中不大引用的术语。  3.设计参数  按室外气象参数与室内空气质量两方面进行规定。室外气象参数是空调设计使用的室外空气计算参数;室内空气质量是根据目前常用的家用中央空调自身特点而制定的室内空气温度、含尘量、新风量等的一系列规定。  4.空气调节  4.1 负荷计算 规定了空调负荷计算的要求与方法,并对家用中央空调使用的特殊性作了计算上的要求。  4.2 系统设计 规定了空调风系统的划分原则,并对分体多联空调系统、水环热泵空调系统、空调水管路系统、冷却塔和排风系统等设计、选用提出了要求。  4.3 空气处理与分布 在空调系统的空气处理、空气分布、送风温差、空气循环次数及风速等方面规定了设计要求。  5.设备、管道与布置  5.1 一般规定 设备及管道材料的选择与布置应符合国家和上海市政府发布的现行法令、规范、标准、条例。  5.2 设备、材料选择 对设备、材料作出了安全、高效、环保、节能的选择原则。  5.3 设备、管道布置 对设备、管道布置作了较严格规定,尤其是家用中央空调室外机的布置,更是涉及到人身安全的大问题,设计不容马虎。  6.防腐与保温  叙述了防腐与保温的设计原则和设计规定,尤其是涉及到消防、安全,确保使用等方面作了较为详细的规定,如保温材料的选择、厚度的确定等。  7.监测与控制  规定了家用中央空调监测与控制的一般要求、设置原则;空调系统有代表性的参数检测仪表的要求;空调系统监控手段等。  8.消声与隔振  提出了消声与隔振设计原则,规定了必须执行的有关规范、设备选择、布置以及家用中央空调各个设计环节和消声隔振的技术要求。  这本规范的制定,将有助于提高行业内家用中央空调的设计水平,保证设计质量及使用的可靠性和安全性,也必将会提高家用中央空调协会和协会会员单位在广大用户心目中的可信度。

       1 总则

       1.0.1为保证家用(商用)中央空调设计的质量,使设计符合安全、适用、经济、卫生和保护环境的基本要求,制定本规范。

       1.0.2本规范适用于上海地区新建与扩建的居住和公共建筑中,以舒适性要求为主,制冷量在7-80kw的家用(商用)中央空调的设计。改建工程可参照本规范执行。

       1.0.3家用(商用)中央空调设计时,除执行本规范的规定外,尚应符合现行有关标准、规范的规定。

       2 术语

       2.0.l家用(商用)中央空调

       主要用于居住和公共建筑中,以满足舒适性为目的,制冷量在7-80kw范围内,带集中冷热源的空调型式。

       2.0.2空调风系统

       空气经冷热、过滤等处理的送回风系统。

       3 设计参数

       3.1 室外气象参数

       3.1.1冬季空调室外计算温度,应采用历年平均不保证一天的日平均温度。

       3.1.2冬季空调室外计算相对湿度,应采用历年最冷月平均相对湿度。

       3.1.3夏季空调室外计算干球温度,应采用历年平均不保证50h的干球温度。

       3.1.4夏季空调室外计算湿球温度,应采用历年平均不保证50h的湿球温度。

       3.1.5夏季空调室外计算日平均温度,应采用历年平均不保证5天的日平均温度。

       3.1.6冬季室外平均风速,应采用累年最冷三个月各月平均风速的平均值。

       3.1.7夏季室外平均风速,应采用累年最热三个月各月平均风速的平均值。

       3.1.8夏季太阳辐射照度,应根据当地的地理纬度、大气透明度和大气压力,按7月21日的太阳赤纬计算确定。

       3.1.9一些主要城市的室外气象参数,应按《暖通空调气象资料集》中“室外气象参数”采用。

       3.2 室内空气质量

       3.2.1冬季空调室内计算参数,应符合以下规定:

       温度              18- 22℃

       人员经常活动范围内风速      不大于0.4m/s

       当无辅助热源时,冬季室外空调计算温度采用5℃。

       3.2.2设计集中采暖时,冬季室内计算温度,应根据房间的用途,按下列规定采用:

       1.民用建筑的主要房间,宜采用16-20℃;

       2.辅助房间,不宜低于下列数值:

         浴室              25℃

         更衣室             23℃

         托儿所、幼儿园、医护室     20℃

         盥洗室、厕所          12℃

         办公用室            16℃

       3.2.3夏季空调室内计算参数,应符合以下规定:

        温度            24-28℃

        相对湿度不大于       65%

        人员经常活动范围内风速   不大于0.5m/s

       3.2.4空调系统的新风量,应不小于20m3/(h.人)。

       3.2.5室内空气中可吸入颗粒物的浓度应符合《室内空气中可吸人颗粒物卫生标准》(GB17095)的规定,不应大于0.15mg/m3。

       3.2.6通风与空调系统产生的噪声,传播至住宅主要使用房间的噪声级应不大于46dB(A)。

       4 空气调节

       4.l 负荷计算

       4.1.1在方案设计阶段,可采用冷负荷指标估算确定;在初步设计阶段,可采用分项简化计算方法进行,分项内容包括围护结构、人员、设备、灯光、食物和新风(或渗透风),其中国护结构负荷项可按经验指标估算确定;在施工图设计阶段,均应对空调房间或区域进行逐时冷负荷计算。

       4.1.2逐时冷负荷计算应按国家现行《采暖通风与空气调节设计规范》的要求进行。

       4.1.3空调房间或区域的夏季冷负荷,应按各项逐时冷负荷的综合最大值确定。

       4.l.4空调系统冷负荷,应根据所服务房间的同时使用情况,按各空调房间或区域逐时冷负荷的综合最大值确定。

       4.1.5对间歇使用空调的房间,在选择空调末端设备时,应充分考虑建筑物蓄热特性形成的负荷。

       4.1.6对能单独使用空调的房间,在选择空调末端设备时,应考虑邻室不使用空调时形成的负荷。

       4.1.7空调系统的冬季热负荷,可参考夏季冷负荷的数值,乘上经验系数决定。

       4.2 系统设计

       4.2.1属下列情况之一时,宜分别设置空调风系统:

        1.使用时间不同的房间;

        2.温度基数要求不同的房间;

        3.空气中含有异味、油烟或其他有害物质的房间;

        4.负荷特性相差较大及同时分别需供冷与供热的房间或区域。

       4.2.2当房间舒适度要求较高时,宜采用各个房间可进行室内温度独立控制的空调系统。

       4.2.3对于舒适度要求较高、人员较长时间逗留的场所,应采取保证新风量的措施。

       4.2.4有条件时,应优先采用变频或具有节能效果的变容量控制的空调系统;变频设备产生的高次谐波强度应符合国家有关标准的规定。

       4.2.5采用分体多联空调系统时,应符合下列规定:

        1.同一空调系统中,具有需同时分别供冷与供热的房间时,宜选择带有热回收的、能同时供冷与供热的空调系统;

        2.同一空调系统的规模、制冷剂管道最大长度。设备之间的最大高差、运行工况范围等,应符合设备性能的规定;

        3.选择设备时,应根据室内外设计温度、制冷剂配管长度。室内外机的标称冷热量及该设备技术参数等进行计算修正;

        4.空调系统制冷剂管道的管径、管材和管道配件应按生产厂技术要求选用,系统自控设备、制冷剂分配器等主要配件,均应由生产厂配套供应。

       4.2.6采用水环热泵空调系统时,应符合以下规定:

        1.循环水水温直控制在15-35℃;

        2.循环水系统的冷却设备应通过技术经济比较,决定采用闭式或开式冷却水塔;当采用开式冷却水塔时,宜设置中间换热器,由相互隔离的闭式循环水系统与开式冷却水系统组成;

        3.辅助热源的供热量应根据建筑物冬季白天和夜间负荷特性、系统可回收内区余热等,经热平衡计算确定。

       4.2.7设有排风的空调系统,宜设置新风与排风系统的热回收装置。

       4.2.8空调水管路系统,宜采用闭式循环系统,并应考虑水的温度变化引起的热膨胀问题。

       4.2.9冷却塔的选用和设置应符合下列要求:

        1.冷却塔的进、出口水温和循环水量,在夏季空调室外计算湿球温度条件下,应满足制冷机的要求;

        2.采用旋转式布水器的冷却塔,运行时应有保证冷却塔冷却水量的措施;

        3.冷却塔应放置在通风条件良好、远离高温和有害气体的地方,并应避免漂水和噪声对周围环境的影响;

        4.应采用阻燃型材料制作的冷却塔,符合防火要求。

       4.3 空气处理与分布

       4.3.l空调系统的新风和回风应经过滤处理。

       4.3.2空调房间的空气分布,应根据室内温度参数、允许风速、噪声标准和空气质量等要求,结合房间特点、内部装修及设备散热等因素综合考虑。

       4.3.3高大空间的空调设计应符合下列要求:

        1.空调负荷必须通过计算确定;

        2.应注意气流组织的合理性;当采用侧向送风时,回风口宜布置在送风口的同侧下方;当采用双侧送风时,两侧相向气流尚应在生活区或工作区以上搭接;侧向多股平行射流应互相搭接;

        3.应尽量减少非空调区向空调区的热转移,必要时,应在非空调区设置送排风装置。

        4.空调系统的夏季送风温差,当送风高度不大于5m时,不宜大于10℃;当送风高度大于5m时,不宜大于15℃。

       4.3.4空调房间的空气循环次数不宜小于5h-1。

       4.3.5送风口的出口面风速,应根据风量、射程、送风方式、风口类型、安装高度、室内允许风速和噪声标准等因素确定。

       4.3.6回风口不应设在射流区或人员长时间停留的地点;采用侧送风时,宜在送风口的同侧;条件允许时,可采用集中回风或走廊回风,但走廊断面风速不宜过大。

       4.3.7回风口的面吸风速度,宜按表4.3.7选用。

       表4.3.7回风口的面吸风速度

       回风口位置 吸风速度(m/s)

       房间上部 4.0-5.0

       房间下部 不靠近人经常停留的地点时 3.0-4.0

       靠近人经常停留的地点时 1.5-2.0

       用于走廊回风时 1.0-1.5

       5 设备、管道与布置

       5.1 一般规定

       5.1.1设备及管道材料的选择与布置,应符合国家现行规范、标准、条例和上海市政府发布的规定。

       5.1.2空调和通风系统的送、回风、排风管道的防火阀及其感温、感烟控制元件的设置应按国家现行的《建筑设计防火规范》、《高层民用建筑设计防火规范》和《民用建筑防排烟技术规程》执行。

       5.2 设备、材料选择

       5.2.l应优先选用符合下列条件的空调设备:

        1.采用环境污染小的能源;

        2.采用环保型制冷剂;

        3.能源利用效率高。

       5.2.2风管必须采用不燃材料制作;当采用复合材料风管时,其覆面材料必须为不燃材料,内部的绝热材料应为不燃或难燃B1级,且对人体无害的材料。

       5.2.3矩形风管的长边与短边之比不宜大于4:1。

       5.2.4冷凝水管宜采用U—PVC管。

       5.3 设备、管道布置

       5.3.1家用中央空调的室外机必须放置在通风良好、安全可靠的地方,严禁采用钢支架和膨胀螺栓墙体安装。

       5.3.2道路两侧建筑物安装的空调设备,其托板底面距室外地坪的高度不得低于2.5m。

       5.3.3空调室外设备出风口的(冷、热)气流禁止朝向相邻方的门窗,其安装位置距相邻方门窗不得小于下列距离:

        1.制冷额定电功率≤2kw的为3m;

        2.制冷额定电功率>2kw,且≤5kw的为4m;

        3.制冷额定电功率>5kw,且≤10kw的为5m;

        4.制冷额定电功率>10kw,且≤30kw的为6m。

       5.3.4空调冷凝水管应采用间接排水方式。当凝水盘位于机组内负压区时,冷凝水出水口处必须设置存水弯。

       5.3.5空调冷凝6 防腐与保温水水平管道应沿水流方向保持不小于0.5%的坡度。

       5.3.6外墙面上的空调冷凝水管应有组织地排放。

       6.1 防腐

       6.1.1所有非镀锌铁件,须在除锈后刷防锈漆二度;非保温者再刷面漆二度。

       6.1.2采用木质隔热材料时,该材料应经浸渍沥青防腐。

       6.2 保温

       6.2.1下列设备与管道应保温:

        1.导致冷热量损失的部位;

        2.产生凝结水的部位。

       6.2.2设备与管道的保温,应符合下列要求:

        1.保温层的外表面不得产生凝结水;

        2.非闭孔性保温材料的外表面应设隔汽层和保护层;

        3.管道和支吊架之间,管道穿墙、穿楼板处,应采取防止“冷桥”的措施。

       6.2.3设备和管道的保温应以《设备及管道保冷设计导则》(GB/T15586)的防结露计算方法为基础,并考虑减少冷、热损失和材料的价格因素,结合工程实际应用情况确定。

       6.2.4管道保温材料应采用不燃和难燃材料。

       6.2.5穿越防火墙、变形缝两侧各2m范围内风管保温材料及风管型电加热器前后0.8m范围内的风管保温材料,必须采用非燃材料。

       6.2.6制冷剂管道的保温,应按厂家的施工技术要求进行。

       6.2.7使用温度在7-65℃的冷热水管的保温,当采用难燃型闭孔发泡橡塑时,厚度不得小于表6.2.7的规定。

       表6.2.7空调冷热水管橡塑保温最小厚度表

       保温厚度mm 27.5 30 32 35 38 41 44 47

       室内 ≤DN20 DN25-32 DN40-50 DN70-80 DN100-150

       室外 ≤DN32 DN40-50 DN70-80 DN100-125 DN150-200

       注:1.仅适用于上海地区;

       2.难燃型泡沫橡塑绝热制品性能应符合GB/T17794-1999国家标准,且20℃时,导热系数λ≤0.040W/( m? K),湿阻因子不小于800。

       6.2.8使用温度在7-65℃的冷热水管的保温,当采用离心玻璃棉绝热管瓦时,厚度不得小于表6.2.8的规定。

       表6.2.8空调冷热水管玻璃棉保温最小厚度

       保温厚度mm 30 40 45 50 55 60

       室内 ≤DN32 DN40-70 DN80-150 DN200-400

       室外 ≤DN32 DN32-40 DN50-70 DN80-125 DN150-200

       注:1.仅适用于上海地区;

       2.离心玻璃棉绝热制品性能应符合GB/T13350-2000国家标准;20℃时,导热系数λ≤0.042W/( m? K),密度为64kg/m3。

       7 监测与控制

       7.1 一般规定

       7.1.1空调系统的监测与控制,包括参数检测、参数和动力设备状态显示、自动调节和控制、工况自动转换、设备联锁与自动保护等。设计时,应根据功能要求、系统的类型和设备运行时间,经技术比较确定其具体内容。

       7.1.2在满足控制功能和指标的条件下,应简化自动控制系统的控制环节。

       7.1.3采用自动控制的空调系统,应做到系统和管理设计合理,防止运行调节时各并联环路压力失调,其调节机构特性应符合要求。

       7.1.4自动控制方式宜采用电动式。

       7.1.5设置自动控制的空调系统,应具有手动控制功能。

       7.2 检测与信号显示

       7.2.l空调系统有代表性的参数,应在便于观察的地点设置检测仪表。

       7.2.2对于空调系统的下列参数,必要时可设置检测仪表:

        1.室内外温度;

        2.送回风温度;

        3.空气过滤器进出口的静压差;

        4.水过滤器进出口的静压差。

       7.2.3空调系统敏感元件和检测元件的装设地点,应符合下列要求:

        1.室内空气温度:应装设在不受局部热源影响的、有代表性的、空气流通的地点;

        2.风管内空气温度:应由所控系统的工艺要求确定安装位置,并应符合制造厂有关的安装规定;

        3.水流、水压和水温检测元件:安装位置及与管路的连接应符合制造厂的有关规定,并应满足系统的要求。

       7.2.4空调系统的通风机、水泵和电加热器等应设工作状态显示信号。

       7.3 调节与控制

       7.3.1空调系统的调节方式,应根据调节对象的特性参数、房间热湿负荷变化的特点以及控制参数的精度要求等进行选择。

       7.3.2空调的集中控制系统应包括以下监控环节:

        1.设备的启停控制及联锁控制;

        2.设备的状态监视及故障保护;

        3.参数的控制和测量;

        4.执行器的控制;

        5.其他。

       设计时,应根据系统类型、使用功能要求等,经技术经济比较确定监控内容。

       7.3.3空调系统的监控应包括温度、机组的防冻保护控制以及风机运行状态、过滤器状态等环节。设计时,应根据使用要求、系统类型等项经技术经济比较确定。

       7.3.4当水冷式空气冷却器采用变水量控制时,宜由室内温度调节器通过高值或低值选择器进行优先控制,并对加热器进行分程控制;冷水系统宜采用两通阀及改变水泵转速。

       7.3.5全年运行的空调系统。在满足室内参数和节能要求的情况下,宜采用变结构多工况控制系统。工况转换宜采用手动方式。

       7.3.6位于冬季有冻结可能地区的新风或空调机组,应对水盘管加设防冻保护控制。

       7.3.7空调及通风系统宜采用独立电源回路。

       7.3.8空调系统的电加热器应与送风机联锁,送风机应有延时关闭的功能,并应设无风断电保护。设置电加热器的金属风管应接地。

       7.3.9自动调节间的选择,应符合下列要求:

        1.水两通阀,宜采用等百分比特性的;

        2.水三通阀,宜采用抛物线特性或线性特性的;

        3.调节阀的进出口压差,应符合制造厂的有关规定,且应对调节阀的流通能力及孔径进行选择计算

       8 消声和隔振

       8.1 一般规定

       8.1.1空调系统的消声和隔振设计,应根据使用要求、噪声和振动的频率特性及传播方式,综合考虑确定。

       8.1.2空调系统产生的噪声,传播至使用房间和周围环境的噪声级,应符合国家现行《民用建筑隔声设计规范》(GBJ118-88)和《城市区域环境噪声标准》(GB10070-88)等的有关规定。

       8.1.3空调系统产生的振动,传播至使用房间和周围环境的振动级,应符合国家现行《城市区域环境振动标准》(GB10070-88)等的有关规定。

       8.1.4在选择设备和进行系统设计时,应采取下列降低声源噪声的措施:

        1.应选用高效率、低噪声设备;

        2.系统风量一定时,所选风机的风压安全系数不宜过大;

        3.通风机与电动机宜采用直联传动;

        4.通风机进出口处的管道不宜急剧转弯;

        5.必要时,弯头和三通支管等处,应装设导流叶片;

        6.宜少装或不装调节阀,必要时,要求严的房间应在阀后设消声支管或消声风口。

       8.1.5有消声要求的通风和空调系统,其风管内的风速,宜按表8.1.5选用。

       表8.1.5风管内的风速(m/s)

       室内允许噪声dB(A) 主管风速 支管风速 出风口风速(散流器后)

       25-35 ≤2 ≤1.6 ≤0.8

        ≤40 ≤3.0 ≤2.4 ≤1.2

        ≤45 ≤4.0 ≤3.2 ≤1.6

        ≤50 ≤5.0 ≤4.0 ≤2.0

        ≤55 ≤6.0 ≤4.8 ≤2.4

        ≤60 ≤7.0 ≤5.6 ≤2.8

       8.1.6空调机房的位置,不宜靠近有较高隔振和消声要求的房间;当必须靠近时,应采用必要的隔声、隔振、消声和吸声措施。

       8.1.7消声处理后的风管,不宜穿过高噪声的房间;噪声高的风管,不宜穿过噪声要求低的房间。当必须穿过时,应采取隔声措施。

       8.2 消声和隔声

       8.2.1空调设备的声功率级,宜采用实测数值;当无实测数值时,可通过计算确定。

       8.2.2通风和空调系统产生的噪声,当自然衰减不能达到允许噪声标准时,应设置消声器或采取其它消声措施。

       8.2.3选择消声器时,应根据系统所需消声量、噪声源频率特性和消声器的声学性能及空气动力特性等因素,分别采用阻性、抗性或阻抗复合型消声器。

       8.2.4消声器宜布置在靠近机房的气流稳定的管段上,距风机出人口、弯头。三通等要有一定距离,一般要求大于4-5倍风管直径或当量直径;当消声器直接布置在机房内时,消声器、检查门及消声后的风管,应具有良好的隔声能力;必要时,也可在总管和支管上分段设置。

       8.2.5机房应根据邻近房间或建筑物的允许噪声标准,采取相应的隔声措施;当机房靠近有较高消声要求的房间,机房门窗应采用隔声门窗。

       8.2.6管道穿过机房围护结构处,其孔洞四周的缝隙,应使用弹性材料填充密实。

       8.2.7进、出风口与风管之间的连接,应设置适当长度的扩散管,避免突扩或突缩风管的产生。

       8.3 隔振

       8.3.1当通风、空调和制冷装置的振动靠自然衰减不能达到允许程度时,应设置隔振器或采取其它隔振措施。

       8.3.2当设备运转小于或等于 1500r/min时,宜选用弹簧减振器;设备转速大于 1500r/min时,宜选用橡胶等弹性材料的隔振垫块或橡胶隔振器。

       8.3.3选择弹簧隔振器时,应符合下列要求:

        1.设备的运转频率与弹簧隔振器垂直方向的自振频率之比,应大于或等于2.5;

        2.弹簧隔振器承受的载荷,不应超过允许工作载荷;

        3.当共振振幅较大时,宜与阻尼大的材料联合使用;

        4.弹簧隔振器与基础之间宜加一定厚度的弹性隔振垫。

       8.3.4选择橡胶隔振器时,应符合下列要求:

        1.应考虑环境温度对隔振器压缩变形量的影响;

        2.计算压缩变形量宜按制造厂提供的极限压缩量的1/3-1/2采用;

        3.设备的运转频率与橡胶隔振器垂直方向的自振频率之比,应大于或等于2.5;

        4.橡胶隔振器承受的载荷,不应超过允许工作载荷;

        5.橡胶隔振器与基础之间宜加一定厚度的弹性隔振垫。

       8.3.5通风机和空调机组的进出口,宜采用软管连接;制冷机的进出口,宜采用可曲橡胶接头连接。

       8.3.6管道的支吊架宜采用弹性支吊架。

       安装规范

       一.验收安装与配置部分:

       管道循环系统是否有按要求加压试漏。

       室内机、室外机的吸入、吹出部位是否有妨碍、短路。

       室内/外机本体是否安装牢固。

       铜管布设是否美观牢固。

       隔热材料是否确认包装良好。

       排水管安装及排水是否良好。

       与机器连接风管是否已固定。

       管道连接完后,应做通水试验和满水试验,一检查排水畅通,二检查其是否漏水。

       二.验收电器及安全部分:

       电器部分是否有预防老鼠等动物咬坏措施。如:天花上的电线要加护套等。

       电源线线径、漏电开关是否符合规定。

       接地线是否已连接,连接良好、紧固。

       室内外机接线柱的螺丝是否紧固。

       电线连接处是否使用固定片固定。

       电压是否正常,符合额定电压的90%~110%范围内。

       三.验收试运转部分:

       冷媒系统阀门是否全部打开。

       运转前检漏时是否有泄漏(连接部位、阀体)。

       室内外机的地址码是否按要求设定(多联机系列及集中控制系统时设定)。

       室内机及室外机运转时检查是否有不正常的噪音。

       四.竣工验收:

       通风与空调工程的竣工验收,应由建设单位负责,组织施工、设计、监理等单位共同进行,合格后即应办理竣工验收手续。

       (1)通风与空调工程竣工验收时,应检查竣工验收的资料,一般包括下列文件及记录:

       1)图纸会审记录、设计变更通知书和竣工图。

       2)主要材料、设备、成品、半成品和仪表的出厂合格证明及进场检(试)验报告。

       3)隐蔽工程检查验收记录。

       4)工程设备、风管系统、管道系统安装及检验记录。

       5)管道试验记录。

       6)设备单机试运转记录。

       7)系统单机试运转记录。

       8)分部(子分部)工程质量验收记录。

       9)观察质量综合检民记录。

       10)安全和功能检验资料的核查记录。

       好了,今天关于大楼中央空调控制系统设计就到这里了。希望大家对大楼中央空调控制系统设计有更深入的了解,同时也希望这个话题大楼中央空调控制系统设计的解答可以帮助到大家。